3.1079 \(\int \sqrt{1-x} (1+x)^{3/2} \, dx\)

Optimal. Leaf size=48 \[ -\frac{1}{3} (1-x)^{3/2} (x+1)^{3/2}+\frac{1}{2} \sqrt{1-x} x \sqrt{x+1}+\frac{1}{2} \sin ^{-1}(x) \]

[Out]

(Sqrt[1 - x]*x*Sqrt[1 + x])/2 - ((1 - x)^(3/2)*(1 + x)^(3/2))/3 + ArcSin[x]/2

________________________________________________________________________________________

Rubi [A]  time = 0.0055341, antiderivative size = 48, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.235, Rules used = {49, 38, 41, 216} \[ -\frac{1}{3} (1-x)^{3/2} (x+1)^{3/2}+\frac{1}{2} \sqrt{1-x} x \sqrt{x+1}+\frac{1}{2} \sin ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - x]*(1 + x)^(3/2),x]

[Out]

(Sqrt[1 - x]*x*Sqrt[1 + x])/2 - ((1 - x)^(3/2)*(1 + x)^(3/2))/3 + ArcSin[x]/2

Rule 49

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*(m
 + n + 1)), x] + Dist[(2*c*n)/(m + n + 1), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x]
 && EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0] && IGtQ[n + 1/2, 0] && LtQ[m, n]

Rule 38

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(x*(a + b*x)^m*(c + d*x)^m)/(2*m + 1)
, x] + Dist[(2*a*c*m)/(2*m + 1), Int[(a + b*x)^(m - 1)*(c + d*x)^(m - 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \sqrt{1-x} (1+x)^{3/2} \, dx &=-\frac{1}{3} (1-x)^{3/2} (1+x)^{3/2}+\int \sqrt{1-x} \sqrt{1+x} \, dx\\ &=\frac{1}{2} \sqrt{1-x} x \sqrt{1+x}-\frac{1}{3} (1-x)^{3/2} (1+x)^{3/2}+\frac{1}{2} \int \frac{1}{\sqrt{1-x} \sqrt{1+x}} \, dx\\ &=\frac{1}{2} \sqrt{1-x} x \sqrt{1+x}-\frac{1}{3} (1-x)^{3/2} (1+x)^{3/2}+\frac{1}{2} \int \frac{1}{\sqrt{1-x^2}} \, dx\\ &=\frac{1}{2} \sqrt{1-x} x \sqrt{1+x}-\frac{1}{3} (1-x)^{3/2} (1+x)^{3/2}+\frac{1}{2} \sin ^{-1}(x)\\ \end{align*}

Mathematica [A]  time = 0.0336247, size = 44, normalized size = 0.92 \[ \frac{1}{6} \sqrt{1-x^2} \left (2 x^2+3 x-2\right )-\sin ^{-1}\left (\frac{\sqrt{1-x}}{\sqrt{2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - x]*(1 + x)^(3/2),x]

[Out]

(Sqrt[1 - x^2]*(-2 + 3*x + 2*x^2))/6 - ArcSin[Sqrt[1 - x]/Sqrt[2]]

________________________________________________________________________________________

Maple [B]  time = 0.003, size = 71, normalized size = 1.5 \begin{align*}{\frac{1}{3}\sqrt{1-x} \left ( 1+x \right ) ^{{\frac{5}{2}}}}-{\frac{1}{6}\sqrt{1-x} \left ( 1+x \right ) ^{{\frac{3}{2}}}}-{\frac{1}{2}\sqrt{1-x}\sqrt{1+x}}+{\frac{\arcsin \left ( x \right ) }{2}\sqrt{ \left ( 1+x \right ) \left ( 1-x \right ) }{\frac{1}{\sqrt{1-x}}}{\frac{1}{\sqrt{1+x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-x)^(1/2)*(1+x)^(3/2),x)

[Out]

1/3*(1-x)^(1/2)*(1+x)^(5/2)-1/6*(1-x)^(1/2)*(1+x)^(3/2)-1/2*(1-x)^(1/2)*(1+x)^(1/2)+1/2*((1+x)*(1-x))^(1/2)/(1
+x)^(1/2)/(1-x)^(1/2)*arcsin(x)

________________________________________________________________________________________

Maxima [A]  time = 1.52172, size = 38, normalized size = 0.79 \begin{align*} -\frac{1}{3} \,{\left (-x^{2} + 1\right )}^{\frac{3}{2}} + \frac{1}{2} \, \sqrt{-x^{2} + 1} x + \frac{1}{2} \, \arcsin \left (x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)^(1/2)*(1+x)^(3/2),x, algorithm="maxima")

[Out]

-1/3*(-x^2 + 1)^(3/2) + 1/2*sqrt(-x^2 + 1)*x + 1/2*arcsin(x)

________________________________________________________________________________________

Fricas [A]  time = 1.52655, size = 123, normalized size = 2.56 \begin{align*} \frac{1}{6} \,{\left (2 \, x^{2} + 3 \, x - 2\right )} \sqrt{x + 1} \sqrt{-x + 1} - \arctan \left (\frac{\sqrt{x + 1} \sqrt{-x + 1} - 1}{x}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)^(1/2)*(1+x)^(3/2),x, algorithm="fricas")

[Out]

1/6*(2*x^2 + 3*x - 2)*sqrt(x + 1)*sqrt(-x + 1) - arctan((sqrt(x + 1)*sqrt(-x + 1) - 1)/x)

________________________________________________________________________________________

Sympy [B]  time = 5.359, size = 165, normalized size = 3.44 \begin{align*} \begin{cases} - i \operatorname{acosh}{\left (\frac{\sqrt{2} \sqrt{x + 1}}{2} \right )} + \frac{i \left (x + 1\right )^{\frac{7}{2}}}{3 \sqrt{x - 1}} - \frac{5 i \left (x + 1\right )^{\frac{5}{2}}}{6 \sqrt{x - 1}} - \frac{i \left (x + 1\right )^{\frac{3}{2}}}{6 \sqrt{x - 1}} + \frac{i \sqrt{x + 1}}{\sqrt{x - 1}} & \text{for}\: \frac{\left |{x + 1}\right |}{2} > 1 \\\operatorname{asin}{\left (\frac{\sqrt{2} \sqrt{x + 1}}{2} \right )} - \frac{\left (x + 1\right )^{\frac{7}{2}}}{3 \sqrt{1 - x}} + \frac{5 \left (x + 1\right )^{\frac{5}{2}}}{6 \sqrt{1 - x}} + \frac{\left (x + 1\right )^{\frac{3}{2}}}{6 \sqrt{1 - x}} - \frac{\sqrt{x + 1}}{\sqrt{1 - x}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)**(1/2)*(1+x)**(3/2),x)

[Out]

Piecewise((-I*acosh(sqrt(2)*sqrt(x + 1)/2) + I*(x + 1)**(7/2)/(3*sqrt(x - 1)) - 5*I*(x + 1)**(5/2)/(6*sqrt(x -
 1)) - I*(x + 1)**(3/2)/(6*sqrt(x - 1)) + I*sqrt(x + 1)/sqrt(x - 1), Abs(x + 1)/2 > 1), (asin(sqrt(2)*sqrt(x +
 1)/2) - (x + 1)**(7/2)/(3*sqrt(1 - x)) + 5*(x + 1)**(5/2)/(6*sqrt(1 - x)) + (x + 1)**(3/2)/(6*sqrt(1 - x)) -
sqrt(x + 1)/sqrt(1 - x), True))

________________________________________________________________________________________

Giac [A]  time = 1.07302, size = 59, normalized size = 1.23 \begin{align*} \frac{1}{3} \,{\left (x + 1\right )}^{\frac{3}{2}}{\left (x - 1\right )} \sqrt{-x + 1} + \frac{1}{2} \, \sqrt{x + 1} x \sqrt{-x + 1} + \arcsin \left (\frac{1}{2} \, \sqrt{2} \sqrt{x + 1}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-x)^(1/2)*(1+x)^(3/2),x, algorithm="giac")

[Out]

1/3*(x + 1)^(3/2)*(x - 1)*sqrt(-x + 1) + 1/2*sqrt(x + 1)*x*sqrt(-x + 1) + arcsin(1/2*sqrt(2)*sqrt(x + 1))